Exam Seat No:_____

C.U.SHAH UNIVERSITY Summer Examination-2022

Subject Name: Real Analysis - II

Subject Code: 4SC06REA1		Branch: B.Sc. (Mathematics)	
Seme	ster: 6 Date: 02/05/2022	Time: 02:30 To 05:30	Marks: 70
 Instructions: (1) Use of Programmable calculator & any other electronic instrument is prohibited. (2) Instructions written on main answer book are strictly to be obeyed. (3) Draw neat diagrams and figures (if necessary) at right places. (4) Assume suitable data if needed. 			
Q-1	Attempt the following questions:		[14]
a)	State Darboux's theorem for Riemann in	ntegration.	(02)
b)	Let $I = [1,6]$ and $P = \{1,3,5,6\}$ be the Define $f: [1,6] \to \mathbf{R}$ by $f(x) = x^2$ then	partition of $[1,6]$, find $L(P, f)$.	(02)
c)	Show that the function $f: R \to R$ defined derivable at $x = 1$.	d by $f(x) = \begin{cases} x & 0 \le x < 1 \\ 1 & x \ge 1 \end{cases}$ if	is not (02)
d)	Evaluate : $\lim_{x\to 0} \frac{\log x}{\cot x}$.		(02)
e)	State Cauchy's Mean Value Theorem.		(02)
f)	State Fundamental Theorem of Calculus	S.	(01)
g)	Define :Exponential Function.	$\sum_{i=1}^{n} (i + i) = 1$	(01)
h)	True/False : The radius of convergence	of the series $\sum_{n=0}^{\infty} (n+1)x^n$ is 1.	(01)
i)	Define: Norm of Partition.		(01)
Attemp	ot any four questions from Q-2 to Q-8.		
Q-2 a)	Attempt all questions If a bounded function f is integrable on on $[a, c]$ and $[c, b]$ where $c \in (a, b)$ also	[a, b] then show that it is also into justify its converse.	egrable [14] (07)
b)	Prove that every constant function is R- find the value of Biomenn interaction	integrable on any closed interval	,also (05)
c)	If P^* is a refinement of a partition P the	n show that $U(P^*, f) \leq U(P, f)$.	(02)
Q-3 a)	Attempt all questions State and prove necessary and sufficient Riemann integrable on closed interval.	t condition for a bounded functior	[14] (07)

Page **1** of **2**

If $f_1, f_2 \in R[a, b]$ then prove that $f_1 f_2 \in R[a, b]$.Can we say that $f \in R[a, b]$ if $f^2 \in R[a, b]$?Justify. b) (07)

Q-4 Attempt all questions [14]

a) Prove
$$:\frac{\pi^2}{6} \le \int_0^{\pi} \frac{x}{2+\cos x} \le \frac{\pi^2}{2}$$
. Also state the result you use. (06)

b) Show that
$$\tan^{-1} x = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots, -1 \le x \le 1$$
. (04)

Show that
$$\frac{v-u}{1+v^2} < \tan^{-1}v - \tan^{-1}u < \frac{v-u}{1+u^2}$$
 if $0 < u < v$. Also deduce that
 $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1}\frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$. (04)

c)

[14] State and prove Lagrange's mean-value theorem. (05)a) Show that $x - \frac{x^2}{2} < \log(1 + x) < x - \frac{x^2}{2(1+x)}$ for $\forall x > 0$. b) (05)

c) Verify Rolle's theorem for the function
$$f(x) = (x - a)^m (x - b)^n$$
 where *m* and
n are positive integerson[*a*, *b*]. (04)

[14]

[14]

[14]

Q-6 Attempt all questions

a) Let $\{f_n\}$ be a sequence of differentiable functions on [a, b] such that it converges (09)at least one point $x_0 \in [a, b]$. If the sequence of differentials $\{f'_n\}$ converges uniformly to G on [a, b] then show that given sequence $\{f_n\}$ converges uniformly on [a, b] to f and f'(x) = G(x) for all $x \in [a, b]$. Prove that a every derivable function is continuous .Does the converse (05)

b) true?Justify.

Q-7 Attempt all questions

- a) Test the uniform convergence of the sequence $\{f_n\}$ on [0,100], where $f_n(x) = \frac{nx}{1+n^2x^2}$. (05)
- Show that if the power series $\sum a_n x^n$ converges for $x = x_0$ then it is absolutely b) (05)convergent for every $x = x_1$, when $|x_1| < |x_0|$.

c) Evaluate
$$\lim_{x\to 0} \frac{xe^x - \log(1+x)}{x^2}$$
. (04)

Q-8 Attempt all questions

State and prove Able's Theorem (second form). (10)a)

b) Find the radius of convergence of the series
$$\frac{1}{2}x + \frac{1\cdot 3}{2\cdot 5}x^2 + \frac{1\cdot 3\cdot 5}{2\cdot 5\cdot 8}x^3 + \cdots$$
 (04)

